×
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT

Scientists manipulate mosquitoes in malaria fight

Last Updated 03 May 2018, 06:51 IST

 In a study published in the journal Nature, researchers from Imperial College London and the University of Washington, Seattle found that after making specific genetic changes to a few mosquitoes and then allowing them to breed on, genetic alterations could be spread through large mosquito populations in a few generations.

This is the first successful proof-of-principle experiment of its kind, they said, and suggests the method may in future be used to spread genetic changes in wild mosquito populations to make them less able to transmit malaria.

 “This is an exciting technological development, one which I hope will pave the way for solutions to many global health problems,” said Andrea Crisanti of Imperial’s life sciences department, who led the study.

Malaria is an infectious disease that affects more than 240 million people every year, and kills around 850,000 annually — many of them children in Africa.

Genetic modification

Health experts have called for malaria eradication and genetic ways of manipulating or eradicating mosquitoes have been suggested as possible alternatives to existing control methods such as pesticides and bednets. But the success of a genetic approach depends on getting the genetic modification to spread effectively in large mosquito populations.

In these new experiments, the scientists showed that a modified genetic element -- a homing endonuclease gene called I-SceI -- can efficiently spread through caged populations of mosquitoes. The genetic element 'homes' to a particular portion of the DNA, they explained, where it becomes integrated into the broken chromosome. This process -- known as genetic drive -- could be used to transmit a genetic change through a population of mosquitoes that affects the insects' ability to carry malaria.

Crisanti's team bred mosquitoes with a green fluorescent gene as a marker that can easily be spotted in experiments. They allowed these insects to mate with a small number of mosquitoes that carried a segment of DNA coding for an enzyme which can permanently inactivate the fluorescent gene. After each generation, they counted how many still had a green gene.

The results showed that after starting with almost 99 per cent of fluorescent mosquitoes, more than half had lost their green genes in just 12 generations.

The researchers said this technique should allow scientists to focus on controlling just the most dangerous species. “In our mosquitoes the homing endonuclease gene is only passed on... directly to the carrier's offspring. This makes for a uniquely safe biological control measure that will not affect even very closely related mosquito species,” said Imperial’s Nikolai Windbichler, who also worked on the study.

ADVERTISEMENT
(Published 21 April 2011, 17:41 IST)

Follow us on

ADVERTISEMENT
ADVERTISEMENT