ADVERTISEMENT
Research busts 'good study habits' myth
International New York Times
Last Updated IST

The findings can help anyone, from a fourth grader doing long division to a retiree taking on a new language. But they directly contradict much of the common wisdom about good study habits, and they have not caught on.

For instance, instead of sticking to one study location, simply alternating the room where a person studies improves retention. So does studying distinct but related skills or concepts in one sitting, rather than focusing intensely on a single thing.

“We have known these principles for some time, and it’s intriguing that schools don’t pick them up, or that people don’t learn them by trial and error,” said Robert A Bjork, a psychologist at the University of California. “Instead, we walk around with all sorts of unexamined beliefs about what works that are mistaken.”

Take the notion that children have specific learning styles, that some are “visual learners” and others are auditory; some are “left-brain” students, others “right-brain.” In a recent review of the relevant research, published in the journal Psychological Science in the Public Interest, a team of psychologists found almost zero support for such ideas. “The contrast between the enormous popularity of the learning-styles approach within education and the lack of credible evidence for its utility is, in our opinion, striking and disturbing,” the researchers concluded.

Teaching styles

Ditto for teaching styles, researchers say. Some excellent instructors caper in front of the blackboard; others are reserved to the point of shyness. “We have yet to identify the common threads between teachers who create a constructive learning atmosphere,” said Daniel T Willingham, a psychologist at the University of Virginia and author of the book Why Don’t Students Like School?

But individual learning is another matter, and psychologists have discovered that some of the most hallowed advice on study habits is flat wrong. For instance, many study skills courses insist that students find a specific place, a study room or a quiet corner of the library, to take their work. The research finds just the opposite. In one classic 1978 experiment, psychologists found that college students who studied a list of 40 vocabulary words in two different rooms — one windowless and cluttered, the other modern, with a view on a courtyard — did far better on a test than students who studied the words twice, in the same room. Later studies have confirmed the finding, for a variety of topics.

The brain makes subtle associations between what it is studying and the background sensations it has at the time, the authors say, regardless of whether those perceptions are conscious. It colours the terms of the Versailles Treaty with the wasted fluorescent glow of the dorm study room, say; or the elements of the Marshall Plan with the jade-curtain shade of the willow tree in the backyard. Forcing the brain to make multiple associations with the same material may, in effect, give that information more neural scaffolding.

“What we think is happening here is that, when the outside context is varied, the information is enriched, and this slows down forgetting,” said Dr Bjork, the senior author of the two-room experiment.

Varying the type of material studied in a single sitting — alternating, for example, among vocabulary, reading and speaking in a new language — leaves a deeper impression on the brain than concentrating on just one skill at a time. Musicians have known this for years, and their practice sessions include a mix of scales, musical pieces and rhythmic work. Many athletes, too, mix their workouts with strength, speed and skill drills.

The merits

The advantages of this approach to studying can be striking, in some topic areas. In a study by the journal Applied Cognitive Psychology, Doug Rohrer and Kelli Taylor of the University of South Florida taught a group of fourth graders four equations, each to calculate a different dimension of a prism. Half of the children learned by studying repeated examples of one equation, say, calculating the number of prism faces when given the number of sides at the base, then moving on to the next type of calculation, studying repeated examples of that. The other half studied mixed problem sets, which included examples all four types of calculations grouped together. Both groups solved sample problems along the way, as they studied.

A day later, the researchers gave all of the students a test on the material, presenting new problems of the same type. The children who had studied mixed sets did twice as well as the others, outscoring them 77 per cent to 38 per cent. The researchers have found the same in experiments involving adults and younger children.

“When students see a list of problems, all of the same kind, they know the strategy to use before they even read the problem,” said Dr Rohrer. “That’s like riding a bike with training wheels.” With mixed practice, he added, “each problem is different from the last one, which means kids must learn how to choose the appropriate procedure — just like they had to do on the test.”

ADVERTISEMENT
(Published 07 September 2010, 20:22 IST)