what's the buzz

Marine sponge for HIV anti-viral drugs


Scientists at the Florida campus of The Scripps Research Institute have demonstrated that, in cell culture, a natural compound can virtually eliminate human immunodeficiency virus (HIV) in infected cells. The compound defines a novel class of HIV anti-viral drugs endowed with the capacity to repress viral replication in acutely and chronically infected cells.

Current treatment involves the use of several antiretroviral drugs, termed Highly Active Antiretroviral Therapy (HAART), which can extend the life expectancy of HIV-positive individuals and decrease viral load without, however, eradicating the virus.

“We know that there are reservoirs of HIV that aren’t being eliminated by current treatment and that keep replenishing the infection,” said Susana Valente, a Scripps Research biologist who led the study. “Viral production from these cellular reservoirs that harbour an integrated viral genome is not affected by current antiretroviral drugs, which only stop novel rounds of infection. The compound in the current study virtually eliminates all viral replication from already-infected cells where HIV hides,” Valente stated.
 The inhibitor works by binding tightly to the viral protein known as Tat, a potent activator of HIV gene expression, effectively preventing the virus from replicating even at miniscule concentrations—making it the most potent anti-Tat inhibitor described to date, Valente said.

Compound that can stop growth of malaria parasites
Scientists have identified the first reported inhibitors of a key enzyme involved in survival of the parasite responsible for malaria.


Their findings may provide the basis for anti-malarial drug development. Tropical malaria is responsible for more than 1.2 million deaths annually. Severe forms of the disease are mainly caused by the parasite Plasmodium falciparum, transmitted to humans by female Anopheles mosquitoes. Malaria eradication has not been possible due to the lack of vaccines and the parasite’s ability to develop resistance to most drugs.


An international team of scientists, led by researchers from the Department of Pediatrics at the University of California, San Diego School of Medicine, conducted high-throughput screening of nearly 350,000 compounds in the National Institutes of Health’s Molecular Libraries Small Molecule Repository (MLSMR) to identify compounds that inhibit an enzyme which plays an important role in parasite development: Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD) is essential for proliferating and propagating P. falciparum.

“The enzyme G6PD catalyzes an initial step in a process that protects the malaria parasite from oxidative stress in red blood cells, creating an environment in which the parasite survives,” said senior author Lars Bode,
The parasitic form of the enzyme (PfG6PD) is what contributes the majority of G6PD activity in infected red blood cells. Because the parasite lives in the blood of a malaria-infected person, the scientists aimed at identifying compounds that inhibit the parasitic form but not the human form of the enzyme.


Being flirty can help women in negotiation


Using flirtation during a negotiation appears to create better economic outcomes for women, a new study has found. However, study leader Laura Kray of the University of California, Berkeley, Haas School of Management, said female negotiators only had an advantage if the flirtatiousness is perceived as above and beyond friendliness.
Researchers examined “feminine charm” in negotiations through four different experiments, looking at the balance between friendliness and flirtatiousness. Flirtation as opposed to friendliness, the research found, signals self-interest and competitiveness.

Liked the story?

  • 0

    Happy
  • 0

    Amused
  • 0

    Sad
  • 0

    Frustrated
  • 0

    Angry