Bee, snake and scorpion venom could be used to fight cancer

Bee, snake and scorpion venom could be used to fight cancer

Bee, snake and scorpion venom could be used to fight cancer

Bee, snake and scorpion venom could be used in fight against cancer after lab trials by an Indian- origin scientist-led team showed that the toxins can kill tumours.

According to a paper presented at the American Chemical Society conference this week, Dipanjan Pan and his team from the University of Illinois said they may have found a way to stop cancer cell growth.

The work is in very early stages, but has shown success in stopping breast cancer and melanoma cell growth in lab tests. Pan's technique uses nanotechnology to deliver a synthesised element similar to the venom found in bees, snakes and scorpions.

Ancient texts show doctors have used venom to treat aliments for years. In 14 BC, the Greek writer Pliny the Elder described the use of bee venom as a cure for baldness. Doctors used bee stings to treat the Emperor Charlemagne's gout in the 700s.

Traditional Chinese medicine has used frog venom to fight liver, lung, colon and pancreatic cancers. The general problem with injecting someone with venom is that there can be harmful side effects.

The properties in venom that destroy cancer cells can have the same effect on healthy cells -- much in the same way chemotherapy causes cell damage, and painful side effects, while treating cancer.

But Pan and his team have developed a technique to separate out the important proteins and peptides in the venom so they can be used to stop cancer cell growth. His lab has found a way to synthesize these helpful cells.

"Since it's synthetic, there's no ambiguity" in what the substance contains, Pan was quoted as saying by CNN.

The synthetic material is then delivered to cancer cells using nanotechnology. In "camouflaging the whole toxin as a part of the nanoparticle," Pan said, it bypasses healthy cells and is attracted to only the cancer cells.

Attached to the cancer cells, these nanoparticles with the synthesised venom can either slow down or stop cancer cell growth, and may ultimately stop the cancer from spreading.

Particles in bee venom seem to specifically stop the cancer stem cells. "That's what we are interested in -- those are the cells responsible for metastasizing and also responsible for having the cancer cells grow back," Pan said. "If we can target better using this technique, we potentially have a better cancer treatment," he said.

Unlike chemotherapy, this more targeted technique would, in theory, only affect cancer cells. If it is successful, this natural agent found in venom could become the basis for a whole legion of cancer-fighting drugs.

Pan's lab will now try the synthesised venom and nanotechnology combination on cancer cells in rats and pigs. If successful, they will then try the technique on humans. He predicts that step could happen in the next three to five years.