Magnetic hard drives go atomic

Last Updated 20 March 2017, 18:31 IST
Chop a magnet in two, and it becomes two smaller magnets. Slice again to make four. But the smaller magnets get, the more unstable they become; their magnetic fields tend to flip polarity from one moment to the next. Now, however, physicists have managed to create a stable magnet from a single atom. The team, which published its work in Nature earlier this month, used single-atom magnets to make an atomic hard drive.

The rewritable device, made from two such magnets, is able to store just two bits of data, but scaled-up systems could increase hard-drive storage density by a thousand times, says Fabian Natterer, a physicist at the Swiss Federal Institute of Technology, or EPFL, in Lausanne, Switzerland, and author of the paper.

Magnetic stability
“It’s a landmark achievement,” says Sander Otte, a physicist at Delft University of Technology in the Netherlands. “Finally, magnetic stability has been demonstrated undeniably in a single atom.” Inside a regular hard drive is a disk split up into magnetised areas — each like a tiny bar magnet — the fields of which can point either up or down. Each direction represents a 1 or 0 — a unit of data known as a bit. The smaller the magnetised areas, the more densely data can be stored. But the magnetised regions must be stable, so that 1s and 0s inside the hard disk do not unintentionally switch.

Current commercial bits comprise about one million atoms. But in experiments, physicists have radically shrunk the number of atoms needed to store one bit — moving from 12 atoms in 2012 to now just one. Fabian and his team used atoms of holmium, a rare-earth metal, sitting on a sheet of magnesium oxide, at a temperature below five kelvins. Holmium is particularly suitable for single-atom storage because it has many unpaired electrons that create a strong magnetic field, and they sit in an orbit close to the atom’s centre where they are shielded from the environment.

This gives holmium both a large and stable field, says Fabian. But the shielding has a drawback: It makes the holmium notoriously difficult to interact with. And until now, many physicists doubted whether it was possible to reliably determine the atom’s state. To write the data onto a single holmium atom, the team used a pulse of electric current from the magnetised tip of scanning tunneling microscope, which could flip the orientation of the atom’s field between a 0 or 1.

Bits of data
In tests the magnets proved stable, each retaining its data for several hours, with the team never seeing one flip unintentionally. It used the same microscope to read out the bit — with different flows of current revealing the atom’s magnetic state.

To further prove that the tip could reliably read the bit, the team — which included researchers from the technology company IBM — devised a second indirect readout method. They used a neighbouring iron atom as a magnetic sensor, tuning it so that its electronic properties depended on the orientation of the two holmium atomic magnets in the 2-bit system. The method also allows the team to read out multiple bits at the same time, says Sander, making it more practical and less invasive than the microscope technique.

Using individual atoms as magnetic bits would radically increase the density of data storage, and Fabian says that his EPFL colleagues are working on ways to make large arrays of single-atom magnets. But the 2-bit system is still far from practical applications and well behind another kind of single-atom storage, which encodes data in atoms’ positions, rather than in their magnetisation, and has already built a one-kilobyte (8,192-bit) rewritable data storage device.

One advantage of the magnetic system, however, is that it could be compatible with spintronics, says Sander. This emerging technology uses magnetic states not just to store data, but to move information around a computer in place of electric current, and would make way for much more energy-efficient systems.

In the near term, physicists are more excited about studying the single-atom magnets. Fabian, for example, plans to observe three minimagnets that are oriented so their fields are in competition with each other — so they continually flip. “You can now play around with these single-atom magnets, using them like Legos, to build up magnetic structures from scratch,” he says.

(Published 20 March 2017, 16:34 IST)

Follow us on